The role of convective plumes and vortices on the global aerosol budget

نویسندگان

  • Jacquelin Koch
  • Nilton O. Renno
چکیده

[1] Atmospheric aerosols produce both a direct radiative forcing by scattering and absorbing solar and infrared radiation, and an indirect radiative forcing by altering cloud processes. Therefore, it is essential to understand the physical processes that contribute to the global aerosol budget. The International Panel on Climate Change (IPCC) reports that mineral dust contributes to 1/3 of all primary particle emissions to the atmosphere. The significance of mineral dust aerosol becomes evident when one considers the large surface area of arid and semi-arid regions on most continents. It is evident from observations in the U.S. Southwest that convective plumes and vortices lift large quantities of desert dust. Here, we use a combination of observational data and theory to determine the role of convective plumes and vortices on the global aerosol budget. We show that convective plumes and vortices contribute to about 35% of the global budget of mineral dust. Citation: Koch, J., and N. O. Renno (2005), The role of convective plumes and vortices on the global aerosol budget, Geophys. Res. Lett., 32, L18806, doi:10.1029/2005GL023420.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection

We report an experimental study on the onset of the large-scale coherent mean flow in Rayleigh–Bénard turbulent convection. Shadowgraph and particle image velocimetry techniques are used to visualize the motion of thermal plumes and measure the velocity of the plumes and of the ‘background’ flow field, as the fluid motion evolves from quiescent to steady state. The experiment reveals the dynami...

متن کامل

Uncertainties in aerosol direct and indirect effects attributed to uncertainties in convective transport parameterizations

Article history: Received 7 January 2011 Accepted 29 September 2012 Deep convection is an important transport mechanism for aerosol particles, allowing them to be lifted to levels where they are subject to long-range transport from source regions to remote regions. The sensitivity of regional aerosol effects to the rate of entrainment in deep moist convection has been explored in a global model...

متن کامل

On Factors Controlling Marine Boundary Layer Aerosol Optical Depth

Sea spray aerosol is one of the largest natural contributors to the global aerosol loading and thus plays an important role in the global radiative budget through both direct and indirect effects. Previous studies have shown either strong or weak relationships betweenmarine boundary layer (MBL) aerosol optical depth (τ) and the near-surface wind speed. However, the marine τ is influenced by a w...

متن کامل

How different source regions across the Middle East change aerosol and dust particle characteristics

A major question is whether different source regions across the Middle East account for changes in aerosol and dust particle characteristics, which impact Western Iran. Therefore, over a period of sampling from April 2017 to April 2018, dust particles were collected in Western Iran from different cities including Urmia, Sanandaj, Sare-Pole-Zahab, Dehloran and Abadan. The research aim is to comp...

متن کامل

Performance Evaluation of Detector Algorithms of Dust Storms in Arid Lands (Case Study: Yazd Province)

Introduction: In recent years, frequency and intensity of dust storms have been increased because of human destructive activities and caused significant loss in different aspects of hygienic and health, environmental and socio-economic sections. Therefore, detection and trace of dust storms in shortest time is the first effective step in preparation and implementation of strategic and operation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005